Package design and development

Package Design and Development
Package design and development are often thought of as an integral part of the new product development process. Alternatively, development of a package (or component) can be a separate process, but must be linked closely with the product to be packaged. Package design starts with the identification of all the requirements: structural design, marketing, shelf life, quality assurance, logistics, legal, regulatory, graphic design, end-use, environmental, etc. The design criteria, time targets, resources, and cost constraints need to be established and agreed upon.

Transport packaging needs to be matched to its logistics system. Packages designed for controlled shipments of uniform pallet loads may not be suited to mixed shipments with express carriers.An example of how package design is affected by other factors is the relationship to logistics. When the distribution system includes individual shipments by a small parcel carrier, the sortation, handling, and mixed stacking make severe demands on the strength and protective ability of the transport package. If the logistics system consists of uniform palletized unit loads, the structural design of the package can be designed to those specific needs: vertical stacking, perhaps for a longer time frame. A package designed for one mode of shipment may not be suited for another.

Sometimes the objectives of package development seem contradictory. For example, regulations for an over-the-counter drug might require the package to be tamper-evident and child resistant: These intentionally make the package difficult to open. The intended consumer, however, might be handicapped or elderly and be unable to readily open the package. Meeting all goals is a challenge.

Package design may take place within a company or with various degrees of external packaging engineering: contract engineers, consultants, vendor evaluations, independent laboratories, contract packagers, total outsourcing, etc. Some sort of formal Project planning and Project Management methodology is required for all but the simplest package design and development programs. An effective quality management system and verification and validation protocols are mandatory for some types of packaging and recommended for all.

Package development involves considertions for sustainability, environmental responsibility, and applicable environmental and recycling regulations. It may involve a life cycle assessment which considers the material and energy inputs and outputs to the package, the packaged product (contents), the packaging process, the logistics system, waste management, etc. It is necessary to know the relevant regulatory requirements for point of manufacture, sale, and use.
 use: if the product is da

The traditional “three R’s” of reduce, reuse, and recycle are part of a waste hierarchy which may be considered in product and package development.

The waste hierarchy Prevention – Waste prevention is a primary goal. Packaging should be used only where needed. Proper packaging can also help prevent waste. Packaging plays an important part in preventing loss or damage to the packaged-product (contents). Usually, the energy content and material usage of the product being packaged are much greater than that of the package. A vital function of the package is to protect the product for its intendedmaged or degraded, its entire energy and material content may be lost.

Minimization –(also "source reduction") The mass and volume of packaging (per unit of contents) can be measured and used as one of the criteria to minimize during the package design process. Usually “reduced” packaging also helps minimize costs. Packaging engineers continue to work toward reduced packging.

Reuse – The reuse of a package or component for other purposes is encouraged. Returnable packaging has long been useful (and economically viable) for closed loop logistics systems. Inspection, cleaning, repair and recouperage are often needed.

Recycling – Recycling is the reprocessing of materials (pre- and post-consumer) into new products. Emphasis is focused on recycling the largest primary components of a package: steel, aluminum, papers, plastics, etc. Small components can be chosen which are not difficult to separate and do not contaminate recycling operations.

Energy recovery – Waste-to-energy and Refuse-derived fuel in approved facilities are able to make use of the heat available from the packaging components.
Disposal – Incineration, and placement in a sanitary landfill are needed for some materials. Certain states within the US regulate packages for toxic contents, which have the potential to contaminate emissions and ash from incineration and leachate from landfill.[5] Packages should not be littered.

Development of sustainable packaging is an area of considerable interest by standards organizations, government, consumers, packagers, and retailers.


Niya said...

Nice package design!!!

package design companies

Abell Gilbert said...

It was a great and interesting post which can be shared here. I am glad to read this posting. brochure designs